09 21

Research papers on pegmatite

research papers on pegmatite

  • Min QuEmail author
  • JingHui Guo
  • Yong Lai
  • Peng Peng
  • Fu Liu
Research Paper

First Online: 26 January 2012

Received: 15 March 2011

Accepted: 25 August 2011

  • 7 Citations

Abstract

Hyalophane-rich pegmatites are identified from the Manjinggou high-pressure granulite terrain in the Central Zone of North China Craton. Based on field investigation, mineral assemblage and mineral geochemistry, two types of pegmatites can be defined, i.e., hyalophane pegmatite and hyalophane-rich pegmatite. The hyalophane pegmatite is composed of pure hyalophane with 18.7 mol%–19.4 mol% celsian, whereas the hyalophane-rich pegmatite consists of clinopyroxene + titanite + epidote + hyalophane with 11.9 mol%–12.5 mol% celsian. Hyalophane-rich pegmatite has typical magmatic zircons with oscillatory zoning and high Th/U ratios, implying that this type of pegmatite crystallized from special melt similar to magma. SIMS (Cameca 1280) zircon U-Pb dating shows that the crystallization age of the hyalophane-rich pegmatite is 1812±5 Ma, younger than the regional metamorphic age (peak of ca. 1.85 Ga). Zircon δ18O (8.0‰–9.3‰) and ɛHf (−7.0 to −2.7) values measured by SIMS suggest that the high-pressure granulite terrain was the source of these veins. Therefore, the hyalophane-rich pegmatite veins were likely to be generated by melting of the high-pressure granulite terrain during post collisional uplift. A quick tectonic uplifting process with a velocity of 0.4 to 0.6 mm/a has been estimated for the high-pressure granulite terrane from the Central Zone of North China Craton.

Keywords

hyalophane pegmatite zircon Hf-O isotope high-pressure granulite Paleoproterozoic North China Craton 

Preview

Unable to display preview. Download preview PDF.

References

  1. 1.

    Zhao G C, Wilde S A, Cawood P A, et al. Thermal evolution of the Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int Geol Rev, 1998, 40: 706–721

    CrossRefGoogle Scholar
  2. 2.

    Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 2005, 136: 177–202

    CrossRefGoogle Scholar
  3. 3.

    Zhai M G, Guo J H, Yan Y H, et al. Discovery of high-pressure basic granulite terrain in North China Archean craton and preliminary study. Sci China Ser B, 1993, 36: 1402–1408

    Google Scholar
  4. 4.

    Zhai M G, Guo J H, Li J H, et al. Retrograded eclogites in the Archean North China craton and their geological implication. Chin Sci Bull, 1996, 41: 315

    Google Scholar
  5. 5.

    Li J H, Zhai M G, Qian X L, et al. The geological occurrence, regional tectonic setting and exhumation of late Archean high-pressure granulite within the high-grade metamorphic terranes, north to central portion of North China Craton (in Chinese). Acta Petrol Sin, 1998, 14: 176–189

    Google Scholar
  6. 6.

    Zhao G C, Wilde S A, Cawood P A, et al. Petrology and

    P-T

    path of the Fuping mafic granulites: Implications for tectonic evolution of the central zone of the North China Craton. J Metamorph Geol, 2000, 18: 375–391

    CrossRefGoogle Scholar
  7. 7.

    Zhao G C, Cawood P A, Wilde S A. High-pressure granulite (retrograded eclogites) from the Hengshan Complex, North China Craton: Petrology and tectonic implications. J Petrol, 2001, 42: 1141–1170

    CrossRefGoogle Scholar
  8. 8.

    Guo J H, O’Brien P J, Zhai M G. High-pressure granulites in the Sanggan area, North China craton: Metamorphic evolution,

    P-T

    paths and geotectonic significance. J Metamorph Geol, 2002, 20: 741–756

    CrossRefGoogle Scholar
  9. 9.

    Zhao G C. Paleoproterozoic assembly of the North China Craton. Geol Mag, 2001, 138: 87–91

    CrossRefGoogle Scholar
  10. 10.

    Zhao G C, Wilde S A, Cawood P A, et al. SHRIMP U-Pb zircon ages of the Fuping Complex: Implications for accretion and assembly of the North China Craton. Am J Sci, 2002, 302: 191–226

    CrossRefGoogle Scholar
  11. 11.

    Zhao G C, Wilde S A, Sun M, et al. SHRIMP U-Pb zircon geochronology of the Huai’an Complex: Constraints on late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen. Am J Sci, 2008, 308: 270–303

    CrossRefGoogle Scholar
  12. 12.

    Guo J H, Zhai M G. Sm-Nd age dating of high-pressure granulites and amphibolite from Sanggan area, North China Craton. Chin Sci Bull, 2001, 46: 106–110

    CrossRefGoogle Scholar
  13. 13.

    Guo J H, Sun M, Chen F K, et al. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. J Asian Earth Sci, 2005, 24: 629–642

    CrossRefGoogle Scholar
  14. 14.

    Kröner A, Wilde S A, Zhao G C, et al. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: Evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Res, 2006, 146: 45–67

    CrossRefGoogle Scholar
  15. 15.

    Wang J, Wu Y B, Gao S, et al. Zircon U-Pb and trace element data from rocks of the Huai’an Complex: New insights into the late Paleoproterozoic collision between the Eastern and Western Blocks of the North China Craton. Precambrian Res, 2010, 178: 59–71

    CrossRefGoogle Scholar
  16. 16.

    Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and

    P-T

    path constraints and tectonic evolution. Precambrian Res, 2001, 107: 45–73

    CrossRefGoogle Scholar
  17. 17.

    Liu F, Guo J H, Lu X P, et al. Crustal growth at ∼2.5 Ga in the North China Craton: Evidence from whole-rock Nd and Hf isotopes in the Huai’an gneiss terrane. Chin Sci Bull, 2009, 54: 4704–4713

    CrossRefGoogle Scholar
  18. 18.

    Guo J H, Zhai M G, Zhang Y G, et al. Early Precambrian Manjinggou high-pressure granulite melange belt on the south edge of the Huai’ an complex, North China Craton: Geological features, petrology and isotopic geochronology (in Chinese). Acta Petrol Sin, 1993, 8: 329–341

    Google Scholar
  19. 19.

    Li X H, Liu Y, Li Q L, et al. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosyst, 2009, 10: Q04010, doi: 10.1029/ 2009GC002400

    CrossRefGoogle Scholar
  20. 20.

    Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostand Newsl, 1995, 19: 1–23

    CrossRefGoogle Scholar
  21. 21.

    Li X H, Long W G, Li Q L, et al. Penglai Zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age. Geostand Geoanalyt Res, 2010, 34: 117–134

    CrossRefGoogle Scholar
  22. 22.

    Ireland T R, Williams I S. Considerations in zircon geochronology by SIMS. Rev Mineral Geochem, 2003, 53: 215–241

    CrossRefGoogle Scholar
  23. 23.

    Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett, 1975, 26: 207–221

    CrossRefGoogle Scholar
  24. 24.

    Ludwig K R. Users Manual for Isoplot/Ex Rev.2.49. Berkeley Geochronology Centre Special Publication, No.1a, 2001. 56

    Google Scholar
  25. 25.

    Li X H, Li W X, Wang X C, et al. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China:

    In situ

    zircon Hf-O isotopic constraints. Sci China Ser D-Earth Sci, 2009, 52: 1262–1278

    CrossRefGoogle Scholar
  26. 26.

    Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal. Geostand Geoanalyt Res, 2004, 28: 9–39

    CrossRefGoogle Scholar
  27. 27.

    Li Q L, Li X H, Liu Y, et al. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. J Anal Atom Spectrom, 2010, 25: 1107–1113

    CrossRefGoogle Scholar
  28. 28.

    Iizuka T, Hirata T. Improvement of precision and accuracy in

    in-situ

    Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chem Geol, 2005, 220: 121–137

    CrossRefGoogle Scholar
  29. 29.

    Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol, 2006, 234: 105–126

    CrossRefGoogle Scholar
  30. 30.

    Xie L W, Zhang Y B, Sun J F, et al. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chin Sci Bull, 2008, 53: 1565–1573

    CrossRefGoogle Scholar
  31. 31.

    Deer W A, Howie R A, Zussman J. Rock-forming minerals. Framework Silicates, 1963, 4: 435

    Google Scholar
  32. 32.

    Jakobsen U H. A hydrated barium silicate in unmetamorphosed sedimentary rocks of central North Greenland. Mineral Mag, 1990, 54: 81–89

    CrossRefGoogle Scholar
  33. 33.

    Frondel C, Ito J, Hendricks J G. Barium feldspars from Franklin, New Jersey. Am Mineral, 1966, 51: 1388–1393

    Google Scholar
  34. 34.

    Zhang M, Suddaby P, Thompson R N, et al. The origins of contrasting zoning patterns in hyalophane from olivine leucitites, Northeast China. Mineral Mag, 1993, 57: 565–573

    CrossRefGoogle Scholar
  35. 35.

    Rao A T. Study of the apatite-magnetite veins near Kasipatnam, Visakhapatnam District, Andhra Pradesh, India. TMPM, 1976, 23: 87–103

    Google Scholar
  36. 36.

    Miyazoe T, Nishiyama T, Uyeta K, et al. Coexistence of pyroxenes jadeite, omphacite, and diopside/hedenbergite in an albite-omphacite rock from a serpentinite mélange in the Kurosegawa Zone of Central Kyushu, Japan. Am Mineral, 2009, 94: 34–40

    CrossRefGoogle Scholar
  37. 37.

    Corfu F, Hanchar J M, Hoskin P W O, et al. Altas of zircon textures. Rev Mineral Geochem, 2003, 53: 469–500

    CrossRefGoogle Scholar
  38. 38.

    Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chin Sci Bull, 2004, 49: 1554–1569

    Google Scholar
  39. 39.

    Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol, 2000, 18: 423–439

    CrossRefGoogle Scholar
  40. 40.

    Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem, 2003, 53: 27–62

    CrossRefGoogle Scholar
  41. 41.

    Hu F F, Fan H R, Yang J H, et al. Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U-Pb dating on hydrothermal zircon. Chin Sci Bull, 2004, 49: 1629–1636

    Google Scholar
  42. 42.

    Peng P. Reconstruction and interpretation of giant mafic dyke swarms: A case study of 1.78 Ga magmatism in the North China Craton. In: Kusky T M, Zhai M G, Xiao W J, eds. The Evolving Continents: Understanding Processes of Continental Growth. Geol Soc London Spec Publ, 2010, 338: 163–178

    Google Scholar
  43. 43.

    Valley J W, Lackey J S, Cavosie A J, et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol, 2005, 150: 561–580

    CrossRefGoogle Scholar
  44. 44.

    Gao J, He G Q, Li M S, et al. Uplift mechanism of high-pressure metamorphic rocks, South Tianshan, Xinjiang (in Chinese). Sci Geol Sin, 1996, 31: 365–375

    Google Scholar
  45. 45.

    Zhang Y Q, Zhu B Q, Xie Y W, et al. The uplifting rates for the Western Qinghai-Xizang Plateau: Interpretation of

    40

    Ar-

    39

    Ar dating data for the granites in the area from Yecheng to Shiquanhe (in Chinese). Acta Petrol Sin, 1998, 14: 11–21

    Google Scholar
  46. 46.

    Wang Y B, Wang J, Wang S C. Fission track evidence for rapid uplift of the Nyalam, Higher Himalaya, Tibet, China (in Chinese). Geol Rev, 1998, 44: 430–434

    Google Scholar
  47. 47.

    Lei Y L, Zhong D L, Jia C Z, et al. Late Cenozoic differential uplift-exhumation of batholith and propagation of uplift recorded by fission track thermochronology in Chayu area, the southeast margin of the Tibetan Plateau (in Chinese). Acta Petrol Sin, 2008, 24: 384–394

    Google Scholar
  48. 48.

    Li S G, Li Q L, Hou Z H, et al. Cooling history and exhumation mechanism of the ultrahigh-pressure metamorphic rocks in the Dabie Mountains, central China (in Chinese). Acta Petrol Sin, 2005, 21: 1117–1124

    Google Scholar
  49. 49.

    Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Sci Rev, 2003, 62: 105–161

    CrossRefGoogle Scholar
  50. 50.

    Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta, 2005, 69: 637–648

    CrossRefGoogle Scholar
  51. 51.

    McDonough W F, Sun S S. The composition of the Earth. Chem Geol, 1995, 120: 223–253

    CrossRefGoogle Scholar
  52. 52.

    Rayner N, Stern R A, Carr S D. Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. Contrib Mineral Petrol, 2005, 148: 721–734

    CrossRefGoogle Scholar
  53. 53.

    Han F, Shen J Z, Huchinson R W. Adularia—An important indicator mineral of syngenetic origin for stratiform mineralization at the Dachang tin-polymetallic deposit (in Chinese). Mineral Deposits, 1998, 12: 330–337

    Google Scholar
  54. 54.

    Xia F, Ma D S, Pan J Y, et al. EMP study of early Cambrian barite deposits in Eastern Guizhou, China (in Chinese). Acta Mineral Sin, 2005, 25: 91–96

    Google Scholar
  55. 55.

    Essene E J, Claflin C L, Giorgetti G, et al. Two-, three- and four-feldspar assemblages with hyalophane and celsian: Implications for phase equilibria in BaAl

    2

    Si

    2

    O

    8

    -CaAl

    2

    Si

    2

    O

    8

    -NaAlSi

    3

    O

    8

    -KAlSi

    3

    O

    8

    . Eur J Mineral, 2005, 17: 515–535

    CrossRefGoogle Scholar
  56. 56.

    Beran A, Armstrong J, Rossman G R. Infrared and electron microprobe analysis of ammonium ions in hyalophane feldspar. Eur J Mineral, 1992, 4: 847–850

    Google Scholar
  57. 57.

    Pivec E Jr, Srein V, Navratil O. Hyalophane and Ba-muscovite in a pegmatite-aplite vein from Krhanice, central Bohemia, Czechoslovakia. Acta Univ Carol Geol, 1990, 2: 131–140

    Google Scholar
  58. 58.

    Zak L. Hyalophane-zoisite veins from the pyrite-rhodochrosite deposits near Litosice in eastern Bohemia (Czechoslovakia). Casopis Mineral Geol, 1991, 36: 67–75

    Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Min Qu Email author
  • JingHui Guo
  • Yong Lai
  • Peng Peng
  • Fu Liu
  1. 1.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.The Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of EducationPeking UniversityBeijingChina

research papers on pegmatite PDF Tectonic-hydrothermal pegmatites | Springer for Research ...

research papers on pegmatite Metamorphic Rocks - Term Paper

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>